Efficient low-rank solution of generalized Lyapunov equations
نویسندگان
چکیده
An iterative method for the low-rank approximate solution of a class of generalized Lyapunov equations is studied. At each iteration, a standard Lyapunov is solved using Galerkin projection with an extended Krylov subspace method. This Lyapunov equation is solved inexactly, thus producing a nonstationary iteration. Several theoretical and computational issues are discussed so as to make the iteration efficient. Numerical experiments indicate that this method is competitive vis-à-vis the current state-of-the-art methods, both in terms of computational CPU times and storage needs.
منابع مشابه
Low-rank Iterative Methods for Projected Generalized Lyapunov Equations
LOW-RANK ITERATIVE METHODS FOR PROJECTED GENERALIZED LYAPUNOV EQUATIONS TATJANA STYKEL Abstract. We generalize an alternating direction implicit method and the Smith method for large-scale projected generalized Lyapunov equations. Such equations arise in model reduction of descriptor systems. Low-rank versions of these methods are also presented, which can be used to compute low-rank approximat...
متن کاملLow - Rank Solution Methods for Large - Scale Linear Matrix Equations
LOW-RANK SOLUTION METHODS FOR LARGE-SCALE LINEAR MATRIX EQUATIONS Stephen D. Shank DOCTOR OF PHILOSOPHY Temple University, May, 2014 Professor Daniel B. Szyld, Chair We consider low-rank solution methods for certain classes of large-scale linear matrix equations. Our aim is to adapt existing low-rank solution methods based on standard, extended and rational Krylov subspaces to solve equations w...
متن کاملApproximate Low Rank Solution of Generalized Lyapunov Matrix Equations via Proper Orthogonal Decomposition
We generalized a direct method for generalized Lyapunov matrix equation, using proper orthogonal decomposition (POD). Such equations arise in model reduction of descriptor systems.
متن کاملComputing real low-rank solutions of Sylvester equations by the factored ADI method
We investigate the factored ADI iteration for large and sparse Sylvester equations. A novel low-rank expression for the associated Sylvester residual is established which enables cheap computations of the residual norm along the iteration, and which yields a reformulated factored ADI iteration. The application to generalized Sylvester equations is considered as well. We also discuss the efficie...
متن کاملTruncated low-rank methods for solving general linear matrix equations
This work is concerned with the numerical solution of large-scale linear matrix equations A1XB T 1 + · · ·+ AKXB K = C. The most straightforward approach computes X ∈ Rm×n from the solution of an mn×mn linear system, typically limiting the feasible values of m,n to a few hundreds at most. Our new approach exploits the fact that X can often be well approximated by a low-rank matrix. It combines ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 134 شماره
صفحات -
تاریخ انتشار 2016